Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1063/1.3518...
Article . 2010 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2010
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Faintest Galaxies

Authors: Stefania Salvadori; Andrea Ferrara; Daniel J. Whalen; Volker Bromm; Naoki Yoshida;

The Faintest Galaxies

Abstract

We investigate the nature of Ultra Faint dwarf spheroidal galaxies (UF dSphs) in a general cosmological context, simultaneously accounting for various "classical" dSphs and Milky Way (MW) properties, including their Metallicity Distribution Function (MDF). The model successfully reproduces both the observed [Fe/H]-Luminosity relation and the mean MDF of UFs. According to our results UFs are the living fossils of H2-cooling minihaloes formed at z>8.5, i.e. before the end of reionization. They are the oldest and the most dark matter-dominated (M/L > 100) dSphs in the MW system, with a total mass of M = 10^(7-8) Msun. The model allows to interpret the different shape of UFs and classical dSphs MDF, along with the frequency of extremely metal-poor stars in these objects. We discuss the "missing satellites problem" by comparing the UF star formation efficiencies with those derived for minihaloes in the Via Lactea simulation.

To appear in the conference proceeding: "First Stars and Galaxies: Challenges in the Next Decade" . Publisher: American Institute of Physics. Editors: V. Bromm, D. Whalen, N. Yoshida

Keywords

stars: formation, Cosmology and Nongalactic Astrophysics (astro-ph.CO), METAL-POOR STARS, REIONIZATION, Cosmology: theory; Galaxies: evolution; Stars: formation; Stellar content; Physics and Astronomy (all), FOS: Physical sciences, stellar content, DWARFS, GAS, cosmology: theory, HALO, MILKY-WAY, galaxies: evolution, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green