
We find a correspondence between semiclassical QCD quantized on the light-front and a dual gravity model in anti--de Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence -- light-front holography -- leads to a light-front Hamiltonian and relativistic bound-state wave equations that are functions of an invariant impact variable $��$ which measures the separation of the quark and gluonic constituents within hadrons at equal light-front time. The eigenvalues of the resulting light-front Schr��dinger and Dirac equations are consistent with the observed light meson and baryon spectrum, and the eigenmodes provide the light-front wavefunctions, the probability amplitudes describing the dynamics of the hadronic constituents. The light-front equations of motion, which are dual to an effective classical gravity theory, possess remarkable algebraic and integrability properties which are dictated by the underlying conformal properties of the theory. We extend the algebraic construction to include a confining potential while preserving the integrability of the mesonic and baryonic bound-state equations.
17 pages, 2 figures, Invited talk presented at Hadron 2009, The International Conference on Hadron Spectroscopy, Florida State University, Tallahassee, November 29 - December 4, 2009
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
