Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Bayesian Analysis of Peak Ground Acceleration Attenuation Relationship

Authors: He-Qing Mu; Ka-Veng Yuen; Jane W. Z. Lu; Andrew Y. T. Leung; Vai Pan Iu; Kai Meng Mok;

Bayesian Analysis of Peak Ground Acceleration Attenuation Relationship

Abstract

Estimation of peak ground acceleration is one of the main issues in civil and earthquake engineering practice. The Boore‐Joyner‐Fumal empirical formula [1] is well known for this purpose. In this paper we propose to use the Bayesian probabilistic model class selection approach to obtain the most suitable prediction model class for the seismic attenuation formula. The optimal model class is robust in the sense that it has balance between the data fitting capability and the sensitivity to noise. A database of strong‐motion records is utilized for the analysis. It turns out that the optimal model class is simpler than the full order attenuation model suggested by Boore, Joyner and Fumal (1993).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!