
doi: 10.1063/1.340327
The reaction of vanadia films with yttria stabilized single-crystal cubic and polycrystalline cubic-tetragonal zirconias was studied using Rutherford backscattering (RBS) and x-ray diffraction, with some selected depth profiling studies. Vandium on zirconia readily oxidizes at 500 °C to form vanadia films. With increasing temperature, small amounts of vanadia diffuse into the zirconia. Near 650 °C the vanadia forms a eutectic solution at the surface and massive diffusion into the ZrO2 occurs. With rapid heating much of the vanadia volatilizes; with slow heating the vanadia diffuses large distances into the zirconia. Near 800 °C the vanadia principally reacts with yttria to form yttrium vanadate. At 980 °C and above, vanadia is completely reacted. Zirconia coated with materials which do not form a eutectic mixture (tantala, tantalum, vanadium) showed little reaction or diffusion at 900–1000 °C, but massive dissolution when a eutectic is formed (vanadia, chromia+vanadia). Yttria preferentially diffuses toward the surface when a reaction takes place to form YVO4 . When yttria is sequestered as the vanadate, the zirconia changes phase from cubic to monoclinic. Little difference in reactivity is observed between single-crystal and polycrystalline zirconia due to eutectic solution formation, which, with the phase separation, produces a very corroded surface.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
