Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Kelvin probe force microscope with near-field photoexcitation

Authors: K. Ozasa; S. Nemoto; M. Maeda; M. Hara;

Kelvin probe force microscope with near-field photoexcitation

Abstract

We developed a combined probe microscope—a scanning probe near-field optical microscope (SNOM) combined with Kelvin probe force microscope (KFM) that uses a slim and bent optical fiber probe (S/B fiber probe). The developed SNOM-KFM system enables near-field photoexcitation through an apex of the S/B fiber probe during KFM measurement, so that the photoexcitation effects on surface potential (SP) can be measured with submicron spatial resolution. By measuring the SP of tris(8-hydroxyquinolinato) aluminum(III) (Alq3) thin films, we found that the S/B fiber probes have large negative values in the KFM transfer function. Near-field photoexcitation was performed on Alq3 thin films through the S/B fiber probes, and the spatial pattern of photoinduced reduction in SP was visualized by KFM measurement with the same probe.

Country
Japan
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!