Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physics of Plasmasarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physics of Plasmas
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physics of Plasmas
Article . 2010 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2010
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mach number dependence of electron heating in high Mach number quasiperpendicular shocks

Authors: Matsukiyo, Shuichi;

Mach number dependence of electron heating in high Mach number quasiperpendicular shocks

Abstract

The efficiency of electron heating through microinstabilities generated in the transition region of a quasiperpendicular shock for a wide range of Mach numbers is investigated by utilizing particle-in-cell (PIC) simulation and model analyses. In the model analyses saturation levels of effective electron temperature as a result of microinstabilities are estimated from an extended quasilinear (trapping) analysis for relatively low (high) Mach number shocks. Here, modified two-stream instability (MTSI) is assumed to become dominant in low Mach number regime, while Buneman instability (BI) is assumed to become dominant in high Mach number regime. It is revealed that Mach number dependence of the effective electron temperature in the MTSI dominant case is essentially different from that in the BI dominant case. The effective electron temperature through the MTSI does not depend much on the Mach number, although that through the BI increases with the Mach number as in the past studies. The results are confirmed to be consistent with the PIC simulations both in qualitative and quantitative levels. The model analyses predict that a critical Mach number, above which a steep rise in electron heating rate occurs, may arise at the Mach number of a few tens.

Related Organizations
Keywords

Earth and Planetary Astrophysics (astro-ph.EP), High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Green
bronze