
doi: 10.1063/1.3339780
The structural dependence of the magnetocrystalline anisotropy of itinerant permanent magnets (or nanostructures of iron-series 3d elements) is investigated by model and tight-binding calculations. Magnetic nanostructures yield strong oscillations of the anisotropy as a function of the number of d electrons per atom, which can be tuned by alloying. While interatomic hopping is usually more important in metals than crystal-field interactions, we find substantial crystal-field corrections for some configurations, especially for the atomic square. Finally, we compare our results with Néel model.
Physics, 530, 620
Physics, 530, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
