Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2010
License: CC BY
Data sources: ZENODO
The Journal of Chemical Physics
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Density functional theory study of the optical and electronic properties of oligomers based on phenyl-ethynyl units linked to triazole, thiadiazole, and oxadiazole rings to be used in molecular electronics

Authors: Garzón, Andrés; Granadino-Roldan, José Manuel; Moral Muñoz, Monica; García, Gregorio; Fernández-Liencres, María Paz; Navarro, Amparo; Peña-Ruiz, t; +1 Authors

Density functional theory study of the optical and electronic properties of oligomers based on phenyl-ethynyl units linked to triazole, thiadiazole, and oxadiazole rings to be used in molecular electronics

Abstract

In the present work, we have studied from a theoretical perspective the geometry and electronic properties of the series of related compounds 2,5-bis(phenylethynyl)-1,3,4-thiadiazole, 2,5-bis(phenylethynyl)-1,3,4-oxadiazole, and 2,5-bis(phenylethynyl)-1,2,4-triazole as candidates for electron-conducting polymers and compounds with desirable (opto)electronic properties. The effect of the ethynyl group (CC) on the structure and electronic properties was also studied. The influence of planarity on electrical conductivity has been studied by a natural-bond-orbital analysis. The (opto)electronic properties and conducting capability were investigated through the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, excitation energy, bond length alternation, LUMO energy, electron affinities, and intramolecular reorganization energy. Finally, the evolution of some properties such as optical bandgap and electron affinity with the increase of the number of repeat units in the oligomer chain has been checked.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
Green