Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A generalized equivalent circuit theory for the electric and magnetic resonances of metallic wire networks

Authors: Weiyi Zhang; S. T. Chui;

A generalized equivalent circuit theory for the electric and magnetic resonances of metallic wire networks

Abstract

We generalize Kirchoff’s law for multiply connected wire networks to finite frequencies. We focus on the boundary conditions not present in the conventional Kirchoff’s law at joints when more than three wires come together, which is absent in our previous “circuit theory” for the finite frequency properties of metallic wire networks for singly connected structures. These boundary conditions at the joints involve introducing localized boundary electric fields, in addition to the electric fields of inductive and capacitive origins. The boundary fields act as natural “Lagrange multipliers” for imposing the boundary conditions on the circuit currents. In this way the number of equations is the same as the number of unknowns. The eigenmodes determine not only the circuit current and charge profiles, but also the boundary electric fields which supplement such profiles. The application to T- and H-shape metallic wire networks suggests that the basic types of resonances are mainly controlled by the symmetry and the wire dimensions of the networks. The low frequency modes form along the longest connected paths of the wire network while the high frequency modes can be generated via succeedingly adding more nodes along these various wire paths. The characteristic behavior of the electric and magnetic responses can be inferred from the circuit current profile of a given mode, which offers a simple physical picture on circuit design with particular electromagnetic parameters.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!