
doi: 10.1063/1.3118681
pmid: 19405634
We report disorder to lamellar transition in a system of spherically symmetric particles where the interparticle potential consists of a short-ranged attraction and a longer-ranged repulsion. The system provides a simplified model for aqueous dispersions of colloidal particles and globular proteins that may exhibit stable/metastable clusters or microscopic phases. By using a non-mean-field density functional theory, we predict that under appropriate conditions, a lamellar phase with alternating condensed and dilute layers of particles is thermodynamically more stable than a uniform disordered phase at the same temperature and molecular number density. Formation of the lamellar structure may prohibit the macroscopic fluid-fluid phase transition. At a given condition, the width of the condensed lamellar layers increases with the overall particle density but the trend is opposite for the dilute lamellar layers. A minimal lamellar periodicity is obtained when the condensed and dilute layers have approximately the same thickness.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
