<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Attenuation of high--energy gamma rays by pair--production with UV, optical and IR background photons provides a link between the history of galaxy formation and high--energy astrophysics. We present results from our latest semi-analytic models (SAMs), based upon a $��$CDM hierarchical structural formation scenario and employing all ingredients thought to be important to galaxy formation and evolution, as well as reprocessing of starlight by dust to mid- and far-IR wavelengths. Our models also use results from recent hydrodynamic galaxy merger simulations. These latest SAMs are successful in reproducing a large variety of observational constraints such as number counts, luminosity and mass functions, and color bimodality. We have created 2 models that bracket the likely ranges of galaxy emissivities, and for each of these we show how the optical depth from pair--production is affected by redshift and gamma-ray energy. We conclude with a discussion of the implications of our work, and how the burgeoning science of gamma-ray astronomy will continue to help constrain cosmology.
12 pages, 8 figures, to be published in the Proceedings of the 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, held July 2008 in Heidelberg, Germany
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |