Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental and theoretical study of the pyrrole cluster photochemistry: Closing the πσ* dissociation pathway by complexation

Authors: Václav Profant; Petr Slavíček; Michal Fárník; Viktoriya Poterya; Udo Buck;

Experimental and theoretical study of the pyrrole cluster photochemistry: Closing the πσ* dissociation pathway by complexation

Abstract

Photolysis of size selected pyrrole clusters has been investigated and compared to the photolysis of an isolated pyrrole molecule. Experimentally, size distributions of different mean cluster sizes (n¯=3 and n¯⪢5) have been prepared in supersonic expansions and the clusters were photolyzed at 243 and 193nm. The kinetic energy distributions of the H photofragments have been measured. The distributions exhibit a bimodal character with fast and slow H-fragment peaks similar to the spectra of the bare molecule. However, with increasing cluster size the slow component gains intensity with respect to the fast one. A similar effect is observed with increasing the excitation energy from 243to193nm. Theoretical calculations at the CASSCF/CASPT2 level have been performed for bare and complexed pyrroles (pyrrole is complexed with an argon atom and with another pyrrole unit). Combination of theoretical and experimental approaches leads to the conclusion that the direct dissociative pathway along the πσ* potential energy surface in the N–H stretch coordinate is closed by the presence of the solvent molecule. This pathway is an important channel leading to the fast H atoms in the dissociation of the bare molecule. The solvent molecule influences significantly the electronic structure in the Rydberg-type πσ* state while it has little influence on the valence states. The slow channel is mostly populated by the out-of-plane deformation mode which is also not influenced by solvation. We have also studied other possible reaction channels in pyrrole clusters (hydrogen transfer, dimerization). The present study shows that more insight into the bulk behavior of biologically relevant molecules can be gained from cluster studies.

Related Organizations
Keywords

Models, Molecular, Photolysis, Molecular Structure, Chemistry, Physical, Photochemistry, Ultraviolet Rays, Lasers, Electrons, Models, Theoretical, Kinetics, Models, Chemical, Quantum Theory, Computer Simulation, Pyrroles, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!