
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The structure of the crust of a neutron star is completely determined by the experimentally measured nuclear masses up to a density of the order of 10^11 g.cm^{-3}. At higher densities, the composition of the crust still remains uncertain, mainly due to the presence of ``free'' superfluid neutrons which affect the properties of the nuclear ``clusters''. After briefly reviewing calculations of the equilibrium structure of the crust, we point out that the current approach based on the Wigner-Seitz approximation does not properly describe the unbound neutrons. We have recently abandoned this approximation by applying the band theory of solids. We have shown that the dynamical properties of the free neutrons are strongly affected by the clusters by performing 3D calculations with Bloch boundary conditions.
9 pages, 2 figures, to appear in the Proceedings of the Tours Symposium on Nuclear Physics VI (2006)
Nuclear Theory (nucl-th), Nuclear Theory, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Nuclear Theory (nucl-th), Nuclear Theory, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
