
The conditions for diffusion-driven (Turing) instabilities in systems with two reactive species are well known. General methods for detecting potential Turing bifurcations in larger reaction schemes are, on the other hand, not well developed. We prove a theorem for a graph-theoretic condition originally given by Volpert and Ivanova [Mathematical Modeling (Nauka, Moscow, 1987) (in Russian), p. 57] for Turing instabilities in a mass-action reaction-diffusion system involving n substances. The method is based on the representation of a reaction mechanism as a bipartite graph with two types of nodes representing chemical species and reactions, respectively. The condition for diffusion-driven instability is related to the existence of a structure in the graph known as a critical fragment. The technique is illustrated using a substrate-inhibited bifunctional enzyme mechanism which involves seven chemical species.
Models, Molecular, Enzymes, Substrate Specificity, Diffusion, Enzyme Activation, Models, Chemical, Nonlinear Dynamics, Enzyme Stability, Turing bifurcations, Computer Simulation, Algorithms
Models, Molecular, Enzymes, Substrate Specificity, Diffusion, Enzyme Activation, Models, Chemical, Nonlinear Dynamics, Enzyme Stability, Turing bifurcations, Computer Simulation, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
