
doi: 10.1063/1.2171482
In microfluidic devices, hydrodynamic flow is usually governed by very low Reynold’s numbers. Under these conditions, only laminar flow is possible. Hence, mixing in microfluidics occurs by diffusion only. Interaction of small fluid volumes and acoustic waves in a solid leads to pronounced streaming effects in the fluid inducing mixing and stirring even at low Reynold’s numbers. We demonstrate the applicability of such acoustically induced mixing in a variety of different microfluidic geometries, including planar and conventional three-dimensional microfluidic devices.
ddc:530
ddc:530
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 230 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
