Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent Developments in Linear Stochastic Electrodynamics

Authors: Ana María Cetto; L. de la Peña;

Recent Developments in Linear Stochastic Electrodynamics

Abstract

A detailed analysis of stochastic electrodynamics (SED) as a foundation for quantum mechanics has shown that the reasons for its failure in the case of nonlinear forces are not to be ascribed to the founding principles of the theory but to the approximation methods introduced, particularly the use of the Fokker‐Planck approximation and perturbation theory. To recover the intrinsic possibilities of SED a new, non perturbative approach has been developed, namely linear stochastic electrodynamics (LSED). We here present the basic principles on which LSED is constructed. The demand that the solutions of the SED problem comply with as few as three principles, each one of which is shown to have a clear physical meaning, leads in a natural way to the quantum mechanical description in its Heisenberg form. We briefly re‐examine some of the most often discussed conceptual problems of quantum mechanics from the point of view offered by the new theory and show that it offers well defined and clear physical anwers to them, within a realist and causal perspective. To conclude we add brief comments on a couple of predictions of the theory, the test of which could eventually lead to its validation or refutation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!