
arXiv: hep-th/0508017
Recent results on BPS solitons in the Higgs phase of supersymmetric (SUSY) gauge theories with eight supercharges are reviewed. For U(N_C) gauge theories with the N_F(>N_C) hypermultiplets in the fundamental representation, the total moduli space of walls are found to be the complex Grassmann manifold SU(N_F)/[SU(N_C)xSU(N_F-N_C)xU(1)]. The monopole in the Higgs phase has to accompany vortices, and preserves a 1/4 of SUSY. We find that walls are also allowed to coexist with them. We obtain all the solutions of such 1/4 BPS composite solitons in the strong coupling limit. Instantons in the Higgs phase is also obtained as 1/4 BPS states. As another instructive example, we take U(1)xU(1) gauge theories with four hypermultiplets. We find that the moduli space is the union of several special Lagrangian submanifolds of the Higgs branch vacua of the corresponding massless theory. We also observe transmutation of walls and repulsion and attraction of BPS walls. This is a review of recent works on the subject, which was given at the conference by N.Sakai.
7 pages, 7 figures, Talk at PASCOS2005
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
