
doi: 10.1063/1.2006224
handle: 11441/90113
In this paper, the behavior at resonance of split ring resonators (SRRs) and other related topologies, such as the nonbianisotropic SRR and the broadside-coupled SRR, are studied. It is shown that these structures exhibit a fundamental resonant mode (the quasistatic resonance) and other higher-order modes which are related to dynamic processes. The excitation of these modes by means of a properly polarized time varying magnetic and/or electric fields is discussed on the basis of resonator symmetries. To verify the electromagnetic properties of these resonators, simulations based on resonance excitation by nonuniform and uniform external fields have been performed. Inspection of the currents at resonances, inferred from particle symmetries and full-wave electromagnetic simulations, allows us to predict the first-order dipolar moments induced at the different resonators and to develop a classification of the resonances based on this concept. The experimental data, obtained in SRR-loaded waveguides, are in agreement with the theory and point out the rich phenomenology associated with these planar resonant structures.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 115 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
