
arXiv: cond-mat/0503025
Evanescent wave amplification has been predicted under the ideal condition that the index of refraction, n=−1+i0 precisely, but is difficult to observe in practice because current metamaterials suffer from high losses. We present experimental results on a metamaterial that employs superconducting Nb metals and low-loss dielectric materials. Results include transmission data on a wire, split-ring resonator, and a combination medium at temperatures between 4.2 and 297K. Evidence of negative effective permittivity, permeability, and a negative effective index passband are seen in the superconducting state between 50MHz and 18GHz. We find a dielectric loss of εeff,2=2.6×10−3 in a superconducting wire array at 10.75GHz.
Superconductivity (cond-mat.supr-con), Condensed Matter - Superconductivity, FOS: Physical sciences
Superconductivity (cond-mat.supr-con), Condensed Matter - Superconductivity, FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 149 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
