
An elementary introduction is given to the subject of Supersymmetry in Quantum Mechanics. We demonstrate with explicit examples that given a solvable problem in quantum mechanics with n bound states, one can construct new exactly solvable n Hamiltonians having n-1,n-2,...,0 bound states. The relationship between the eigenvalues, eigenfunctions and scattering matrix of the supersymmetric partner potentials is derived and a class of reflectionless potentials are explicitly constructed. We extend the operator method of solving the one-dimensional harmonic oscillator problem to a class of potentials called shape invariant potentials. Further, we show that given any potential with at least one bound state, one can very easily construct one continuous parameter family of potentials having same eigenvalues and s-matrix. The supersymmetry inspired WKB approximation (SWKB) is also discussed and it is shown that unlike the usual WKB, the lowest order SWKB approximation is exact for the shape invariant potentials. Finally, we also construct new exactly solvable periodic potentials by using the machinery of supersymmetric quantum mechanics.
Latex file, 4 figures, Lecture Notes presented at EALF 2004, Will be published in the AIP Conference Proceedings AIP
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
