Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Journal of Applied Physics
Article . 1945 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Convection Currents in a Porous Medium

Convection currents in a porous medium
Authors: Horton, C. W.; Rogers, F. T. jun.;

Convection Currents in a Porous Medium

Abstract

The problem is considered of the convection of a fluid through a permeable medium as the result of a vertical temperature-gradient, the medium being in the shape of a flat layer bounded above and below by perfectly conducting media. It appears that the minimum temperature-gradient for which convection can occur is approximately 4π2h2μ/kgρ0α D2, where h2 is the thermal diffusivity, g is the acceleration of gravity, μ is the viscosity, k is the permeability, α is the coefficient of cubical expansion, ρ0 is the density at zero temperature, and D is the thickness of the layer; this exceeds the limiting gradient found by Rayleigh for a simple fluid by a factor of 16D2/27π2kρ0. A numerical computation of this gradient, based upon the data now available, indicates that convection currents should not occur in such a geological formation as the Woodbine sand of East Texas (west of the Mexia Fault zone); in view of the fact, however, that the distribution of NaCl in this formation seems to require the existence of convection currents, and in view of the approximations involved in applying the present theory, it seems safe tentatively, to conclude that convection currents do exist in this formation and that the expression given above predicts excessive minimum gradients when applied to such a formation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    815
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
815
Top 0.1%
Top 0.1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!