
doi: 10.1063/1.1664570
The unitary representations of the affine group, or the group of linear transformations without reflections on the real line, have been found previously by Gel'fand and Naimark. The present paper gives an alternate proof, and presents several properties of the representations which will be used in a later application of this group to continuous representations of Hilbert space. The development follows closely that used by von Neumann to prove the uniqueness of the Schrödinger operators.
Lie groups, continuous representations of Hilbert space, group of linear transformations without reflections on the real line, unitary representations, affine group
Lie groups, continuous representations of Hilbert space, group of linear transformations without reflections on the real line, unitary representations, affine group
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 88 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
