Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Secondary homoclinic bifurcation theorems

Secondary homoclinic bifurcation theorems.
Authors: Vered Rom-Kedar;

Secondary homoclinic bifurcation theorems

Abstract

We develop criteria for detecting secondary intersections and tangencies of the stable and unstable manifolds of hyperbolic periodic orbits appearing in time-periodically perturbed one degree of freedom Hamiltonian systems. A function, called the ‘‘Secondary Melnikov Function’’ (SMF) is constructed, and it is proved that simple (resp. degenerate) zeros of this function correspond to transverse (resp. tangent) intersections of the manifolds. The theory identifies and predicts the rotary number of the intersection (the number of ‘‘humps’’ of the homoclinic orbit), the transition number of the homoclinic points (the number of periods between humps), the existence of tangencies, and the scaling of the intersection angles near tangent bifurcations perturbationally. The theory predicts the minimal transition number of the homoclinic points of a homoclinic tangle. This number determines the relevant time scale, the minimal stretching rate (which is related to the topological entropy) and the transport mechanism as described by the TAM, a transport theory for two-dimensional area-preserving chaotic maps. The implications of this theory on the study of dissipative systems have yet to be explored.

Related Organizations
Keywords

Bifurcation theory for ordinary differential equations, Hyperbolic singular points with homoclinic trajectories in dynamical systems, Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems, Homoclinic and heteroclinic solutions to ordinary differential equations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!