<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The spectra of quantized chaotic billiards from the point of view of scattering theory are discussed. It is shown how the spectral and resonance density functions both fluctuate about a common mean. A semiclassical treatment explains this in terms of classical scattering trajectories and periodic orbits of the Poincaré scattering map. It is shown that this formalism provides an alternative derivation and a new interpretation of Gutzwiller’s periodic orbits sum for the spectral density. Moreover, it is a convenient starting point for a derivation of a Riemann–Siegel ‘‘look alike’’ expression for the secular equation in terms of periodic orbits of finite length.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 93 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |