
arXiv: cond-mat/0203292
Here we describe the results of an atomic resolution study of oxygen incorporation into bulk MgB2. We find that ∼20–100 nm sized precipitates are formed by ordered substitution of oxygen atoms onto boron lattice sites, while the basic bulk MgB2 crystal structure and orientation is preserved. The periodicity of the oxygen ordering is dictated by the oxygen concentration in the precipitates and primarily occurs in the (010) plane. The presence of these precipitates correlates well with an improved critical current density and superconducting transition behavior, implying that they act as pinning centers.
Superconductivity (cond-mat.supr-con), Condensed Matter - Superconductivity, FOS: Physical sciences
Superconductivity (cond-mat.supr-con), Condensed Matter - Superconductivity, FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
