Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2001
Data sources: zbMATH Open
Physics of Fluids
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Three-dimensional instability of a two-layer Dean flow

Three-dimensional instability of a two-layer dean flow
Authors: Gelfgat, Alexander Yu.; Yarin, Alexander L.; Bar-Yoseph, Pinhas Z.;

Three-dimensional instability of a two-layer Dean flow

Abstract

Stability of a two-layer Dean flow in a cylindrical annulus with respect to three-dimensional perturbations is studied by a global Galerkin method. It is shown that for large inner radius of the annulus (i) the instability becomes three-dimensional if one of the fluid layers is thin, (ii) its onset is not affected by possible small deformations of the interface, and (iii) multiple three-dimensional flow states are expected in a slightly supercritical flow regime. Stability diagrams and patterns of the three-dimensional perturbations are reported. It is concluded that even when the axisymmetric perturbation is the most dangerous, the resulting supercritical flow is expected to be three-dimensional. Possible multiplicity of supercritical three-dimensional states is predicted. The basis functions of the global Galerkin method are constructed so as to satisfy analytically the boundary conditions on no-slip walls and at the liquid–liquid interface. A modification of the numerical approach, accounting for small deformations of the interface which is subject to the action of the capillary force, is proposed. The results are of potential importance for development of novel bioseparators employing Dean vortices for enhancement of mass transfer of a passive scalar (say, a protein) through the interface. The developed numerical approach can be used for stability analysis in other two-fluid systems.

Keywords

pipe flow, Fluid mechanics, flow instability, stratified flow, Galerkin method

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!