Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2001
License: CC BY
Data sources: CONICET Digital
The Journal of Chemical Physics
Article . 2001 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/w4...
Other literature type . 2001
Data sources: Datacite
https://dx.doi.org/10.60692/3s...
Other literature type . 2001
Data sources: Datacite
versions View all 5 versions
addClaim

Configurational entropy for adsorbed linear species (k-mers)

الإنتروبيا التكوينية للأنواع الخطية الممتزة (k - mers)
Authors: F. Romá; A. J. Ramírez-Pastor; J. L. Riccardo;

Configurational entropy for adsorbed linear species (k-mers)

Abstract

The configurational entropy of interacting linear molecules (k-mers) absorbed on a regular lattice is addressed through analytical as well as numerical methods. The general definitions for computational exact calculations of k-mers lattice-gas entropy are presented. In addition, theoretical basis for accurate analytical estimations of the entropy of reference states are given. The coverage and temperature dependence of the configurational entropy of interacting adsorbed dimers on one and two-dimensional lattices are obtained. A novel phase behavior of k-mers lattice-gas is shown and discussed.

Country
Argentina
Keywords

Materials Science, Configurational entropy, Adsorbed linear species, Statistical Mechanics with Long-Range Interactions and Nonextensivity, https://purl.org/becyt/ford/1.4, Materials Chemistry, Entropy (arrow of time), https://purl.org/becyt/ford/1, Stochastic Thermodynamics and Fluctuation Theorems, Accelerating Materials Innovation through Informatics, Physics, Statistical and Nonlinear Physics, Acoustics, Lattice (music), Configuration entropy, Chemistry, Generalized Entropies, Physics and Astronomy, Physical Sciences, Thermodynamics, Statistical physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Green