<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We introduce a novel method for the renormalization of the Hamiltonian operator in Quantum Field Theory in the spirit of the Wilson renormalization group. By a series of unitary transformations that successively decouples the high-frequency degrees of freedom and partially diagonalizes the high-energy part, we obtain the effective Hamiltonian for the low energy degrees of freedom. We successfully apply this technique to compute the 2-loop renormalized Hamiltonian in scalar $����^4$ theory.
12 pages, LaTeX
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |