<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
These lectures describe some aspects of the physics of massive neutrinos. After a brief introduction of neutrinos in the Standard Model, I discuss possible patterns for their masses. In particular, I show how the presence of a large Majorana mass term for the right-handed neutrinos can engender tiny neutrino masses for the observed neutrinos. If neutrinos have mass, different flavors of neutrinos can oscillate into one another. To analyze this phenomena, I develop the relevant formalism for neutrino oscillations, both in vacuum and in matter. After reviewing the existing (negative) evidence for neutrino masses coming from direct searches, I discuss evidence for, and hints of, neutrino oscillations in the atmosphere, the sun, and at accelerators. Some of the theoretical implications of these results are emphasized. I close these lectures by briefly outlining future experiments which will shed further light on atmospheric, accelerator and solar neutrino oscillations. A pedagogical discussion of Dirac and Majorana masses is contained in an appendix.
45 pages, 12 figures, Latex file, to be published in in The Proceedings of the VIII Escuela Mexicana de Particulas y Campos
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |