
doi: 10.1063/1.1150147
A force sensor based on a fiber-optic interferometric displacement transducer incorporated in an ultrahigh vacuum atomic force microscope is described. The operation of the sensor is based on balancing the tip-sample interfacial force using an electrostatic actuator. The electrodes of the actuator are formed by the grounded W cantilever and the metallized end facet of the optical fiber used by the interferometer. Chemical reduction of Ag by a wet chemical method is used for metal coating of the fiber end. A special masking procedure is used to obtain a window hole in the metal coating at the position of the fiber core to allow for optical beam output. Using a window instead of a semitransparent metal film allows us to save the low-finesse characteristics of the interferometer which facilitates the calibration of cantilever displacement. The performance of the sensor is discussed and exemplified by experimental results from force-separation measurements on the W–Au system in ultrahigh vacuum.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
