<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17447162
The aim of our study was to evaluate the effects of dietary equol, metabolite of a phytoestrogen daidzein, on the secretion of prolactin (PRL) and lutenizing hormone (LH), as well as the expression of estrogen receptors (ERalpha, ERbeta and truncated estrogen receptor-1 (TERP-1) in the pituitary gland of ovariectomized (ovx) female Sprague-Dawley rats. Two doses of equol (50 mg/kg of chow and 400 mg/kg of chow) were used and the results were compared with the effects of estradiol 3-benzoate (E2B), also given at two doses (4.3 mg/kg of chow and 17.3 mg/kg of chow). Treatment period was 3 months. Dietary equol administration at the high dose increased significantly serum PRL levels. This effect was also observed in the E2B group but this difference did not reach statistical significance. Surprisingly, high dose dietary equol treatment also significantly increased serum LH levels, which was in contrast to E2B treatment where serum LH levels were significantly decreased at both doses. Serum LH levels in the equol low group were unaffected. Equol treatment had no effects on pituitary ERalpha or ERbeta gene expression. In contrast, high dose E2B treatment increased significantly pituitary ERalpha mRNA levels but decreased those of ERbeta. Both doses of E2B also increased significantly pituitary TERP-1 mRNA levels. This effect was also observed in the equol high group but at a much smaller magnitude. In conclusion, high dose dietary equol administration to ovx rats exerts estrogenic like effects on the lactotropes and anti-estrogenic on the gonadotropes.
Reverse Transcriptase Polymerase Chain Reaction, Ovariectomy, Uterus, Estrogen Receptor alpha, Organ Size, Luteinizing Hormone, Isoflavones, Diet, Prolactin, Rats, Rats, Sprague-Dawley, Equol, Receptors, Estrogen, Pituitary Gland, Animals, Estrogen Receptor beta, Female, Estrogens, Non-Steroidal, RNA, Messenger
Reverse Transcriptase Polymerase Chain Reaction, Ovariectomy, Uterus, Estrogen Receptor alpha, Organ Size, Luteinizing Hormone, Isoflavones, Diet, Prolactin, Rats, Rats, Sprague-Dawley, Equol, Receptors, Estrogen, Pituitary Gland, Animals, Estrogen Receptor beta, Female, Estrogens, Non-Steroidal, RNA, Messenger
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |