Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Free Radicals in Disease

Authors: Neil Hogg;

Free Radicals in Disease

Abstract

Partial reduction of molecular oxygen can generate reactive oxygen species (ROS), including the hydrogen peroxide, and the free radicals superoxide and hydroxyl. The formation of ROS is a feature of many degenerative diseases, such as atherosclerosis and neurodegeneration, Organisms contain a battery of defense mechanisms to prevent the formation of ROS, to scavenge them, and to repair the damage they cause. Free radicals are also involved in signal transduction pathways. For example, the free radical nitric oxide is involved in signal transduction in both the cardiovascular and central nervous systems. The interplay between nitric oxide and ROS has been a major focus of recent studies, as nitric oxide is an efficient radical scavenger. However, in some cases, such as in the formation of peroxynitrite from nitric oxide and superoxide, the product is potentially more deleterious that the parent radicals. This review describes the major chemical species involved in oxidative stress and free radical biochemistry, and gives a brief overview of their role in pathological conditions.

Related Organizations
Keywords

Inflammation, Aging, Free Radicals, Arteriosclerosis, Myocardial Ischemia, Nitric Oxide, Oxidative Stress, Neoplasms, Sepsis, Humans, Lipid Peroxidation, Nervous System Diseases, Reactive Oxygen Species, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    211
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
211
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?