Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurosurgical Focusarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurosurgical Focus
Article . 2001 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Seminars in Neurosurgery
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Motor Cortex Stimulation

Authors: J A, Brown;

Motor Cortex Stimulation

Abstract

In 1991 Tsubokawa and colleagues first published their landmark results from a series in which epidural motor cortex stimulation (MCS) was used in the treatment of eight patients with central and neuropathic pain. In ensuing studies authors have elaborated on the indications, technique, hypotheical mechanisms, and beneficial results of this treatment. Epidural MCS is effective for trigeminal neuropathy, lateral medullary and thalamic infarction, anesthesia dolorosa, postherpetic neuralgia, spinal cord injury, and limb stump pain. Postoperative outcomes are better when patients present with only mild or absent motor weakness in the region of pain and when there is pain in the trigeminal region. It is hypothesized that MCS is effective because it increases regional cerebral blood flow in the ipsilateral ventrolateral thalamus in which corticothalamic connections from the motor and premotor areas predominate. The extent of pain alleviation also correlates with the increase of blood flow in the cingulate gyrus. This suggests that stimulation reduces the suffering experienced by a patient with chronic pain. Procedure-related morbidity has included epidural hematoma, subdural effusion, gradual diminution of benefit, and painful stimulation. Although of concern, treatment-induced chronic seizure disorders have not occurred as a complication or in animal models of chronic cortical stimulation. Stimulation-induced pain relief occurs within minutes. There are no associated paresthesias or muscle contractions that confirm function. Pain relief may last for hours after electrical stimulation is discontinued. Motor cortex stimulation is an established therapy for the treatment of complex central and neuropathic pain syndromes that have proved refractory to medical treatment.

Related Organizations
Keywords

Motor Cortex, Humans, Pain Management, Electric Stimulation Therapy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Average
gold