
AbstractThe development of tooth is a highly complex procedure and mastered by specific genetic programs. Genetic alterations, environmental factors, and developmental timing can disturb the execution of these programs, and result in various dental anomalies like hypodontia/oligodontia, and supernumerary teeth, which are commonly seen in our clinical practice. Advances in molecular research enabled the identification of various genes involved in the pathogenesis of dental anomalies. In the near future, it will help provide a more accurate diagnosis and biological-based treatment for these anomalies. In this article, we present the molecular phenomenon of tooth development and the genetics of various dental anomalies.
Genetics, tooth development, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, genetics, QH426-470, genes, mutations, RC254-282, dental anomalies
Genetics, tooth development, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, genetics, QH426-470, genes, mutations, RC254-282, dental anomalies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
