Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Prostaglandins Leuko...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Prostaglandins Leukotrienes and Essential Fatty Acids
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2002
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2002
Data sources: IRIS Cnr
CNR ExploRA
Article . 2002
Data sources: CNR ExploRA
CNR ExploRA
Article . 2002
Data sources: CNR ExploRA
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anandamide receptors

Authors: Di Marzo V; De Petrocellis L; Fezza F; Ligresti A; Bisogno T;
Abstract

Anandamide (N -arachidonoyl-ethanolamine, AEA) was the first endogenous ligand of cannabinoid receptors to be discovered. Yet, since early studies, AEA appeared to exhibit also some effects that were not mediated by cannabinoid CB(1) or CB(2) receptors. Indeed, AEA exerts some behavioral actions also in mice with genetically disrupted CB(1) receptors, whereas in vitro it is usually a partial agonist at these receptors and a weak activator of CB(2) receptors. Nevertheless, several pharmacological effects of AEA are mediated by CB(1) receptors, which, by being coupled to G-proteins, can be seen as AEA "metabotropic" receptors. Furthermore, at least two different, and as yet uncharacterized, G-protein-coupled AEA receptors have been suggested to exist in the brain and vascular endothelium, respectively. AEA is also capable of directly inhibiting ion currents mediated by L-type Ca(2+) channels and TASK-1 K(+) channels. However, to date the only reasonably well characterized, non-cannabinoid site of action for AEA is the vanilloid receptor type 1 (VR1), a non-selective cation channel gated also by capsaicin, protons and heat. VR1 might be considered as an AEA "ionotropic" receptor and, under certain conditions, mediates effects ranging from vasodilation, broncho-constriction, smooth muscle tone modulation and nociception to stimulation of hippocampal pair-pulse depression, inhibition of tumor cell growth and induction of apoptosis.

Keywords

Potassium Channels, Calcium Channels, L-Type, Polyunsaturated Alkamides, Receptors, Drug, Brain, Arachidonic Acids, Receptors, N-Methyl-D-Aspartate, FATTY-ACID AMIDE HYDROLASE, FACILITATED TRANSPORT, Animals, Endothelium, Vascular, PROTEIN-KINASE-C, Receptors, Cannabinoid, CB1 CANNABINOID RECEPTOR, VANILLOID VR1 RECEPTORS, Endocannabinoids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    259
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
259
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!