Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Hypothesesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Hypotheses
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neutrophil degranulation: coactivation of chemokine receptor(s) is required for extracellular nucleotide-induced neutrophil degranulation

Authors: S, Kannan;

Neutrophil degranulation: coactivation of chemokine receptor(s) is required for extracellular nucleotide-induced neutrophil degranulation

Abstract

Extracellular nucleotide-induced stimulation of leukocytes and subsequent adhesion to endothelium plays a critical role in inflammatory diseases. The extracellular nucleotides stimulate a P2Y receptor on human PMN with the pharmacological profile of the P2Y2 receptor. Followed by generation of arachidonic acid, subsequently metabolized by 5 lipoxygenase forming the leukotrienes (LT). Of the several LTs generated, LTB(4)is a potent chemokine and upon its release binds to the PMN in an autocrine manner leading to the PMN degranulation. It is known that LTB(4)causes neutrophil degranulation through its receptor specific binding while the molecular mechanism remains not known at present. However, it is not known whether any LTB(4)receptor exists in cytoplasm in any given cell type and also, the existence of any other signaling cascade for the extracellular nucleotide-induced neutrophil degranulation. Based on the few direct experimental and numerous circumstantial evidence, it is conceivable that the extracellular nucleotides require LT generation, as an essential intermediate for mediating neutrophil degranulation.

Related Organizations
Keywords

Blood Platelets, Receptors, Leukotriene, Neutrophils, Nucleotides, Humans, Receptors, Chemokine, Platelet Activation, Cell Degranulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!