Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Seminars in Hematolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Hematology
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Hematology
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

Deferoxamine pharmacokinetics

Authors: J B, Porter;

Deferoxamine pharmacokinetics

Abstract

Despite the clinical use of deferoxamine for more than a quarter of a century, pharmacokinetic studies are few and have not been performed explicitly in patients with sickle cell disorders. Early studies with Intravenous administration to healthy volunteers and patients with transfusional overload showed that although peak concentrations of deferoxamine were similar in both groups, concentrations of ferrioxamine were higher in the latter. In iron-overloaded patients with hereditary hemochromatosis, an intramuscular 10 mg/kg bolus of deferoxamine gave maximal plasma ferrioxamine concentrations exceeding those of deferoxamine, whereas in normal controls the reverse was the case. In more recent studies with homozygous beta-thalassemia, using continuous Intravenous deferoxamine infusion at 50 mg/kg/d, and initial elimination half-life of 0.28/h and steady-state concentration of 7 micromol/L were observed. In these studies, steady-state plasma levels of the predominant deferoxamine metabolite B were usually lower than those of unmetabolized deferoxamine. In a further intravenous infusion study, the proportion of plasma metabolites was higher in those thalassaemia patients with low serum ferritin levels relative to their current mean daily deferoxamine dose, suggesting that high metabolite levels may predict excessive desferrioxamine dosing. This hypothesis is supported by subcutaneous studies in which low doses of slow-release depot deferoxamine resulted in significantly lower proportions of plasma metabolites than with conventional 8-hour infusions at 40 mg/kg. Because serum ferritin is particularly unreliable as a marker of iron overload in sickle cell disorders, measurement of metabolites or the relative proportions of deferoxamine and ferrloxamine may help identify patients at risk of excessive dosing. Because iron overload is likely to become an increasing issue in patients with sickle cell disorders, studies of the pharmacokinetics and metabolism of deferoxamine in this patient group are needed.

Related Organizations
Keywords

Kinetics, Drug Administration Routes, Humans, Anemia, Sickle Cell, Deferoxamine, Iron Chelating Agents, Ferric Compounds

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!