Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cardiothoracic and Vascular Anesthesia
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hemodynamic and oxygenation changes of combined therapy with inhaled nitric oxide and inhaled aerosolized prostacyclin

Authors: Giorgio Della Rocca; Cecilia Coccia; Livia Pompei; Franco Ruberto; VENUTA, Federico; DE GIACOMO, Tiziano; PIETROPAOLI, Paolo;

Hemodynamic and oxygenation changes of combined therapy with inhaled nitric oxide and inhaled aerosolized prostacyclin

Abstract

To evaluate hemodynamic and oxygenation changes of combined therapy with inhaled nitric oxide (iNO) and inhaled aerosolized prostcyclin (IAP) during lung transplantation.Prospective study.University hospital.Ten patients scheduled for lung transplantation.Ten patients, with a mean age of 38 years (range, 24 to 56 years), were scheduled for lung transplantation (2 single-lung transplantations and 8 double-lung transplantations). During first lung implantation with single-lung perfusion and ventilation, hemodynamic and oxygenation data were analyzed in 3 phases: (1) baseline, 5 minutes after pulmonary artery clamping; (2) inhaled NO phase, 15 minutes after inhaled NO administration (20 ppm) in 100% oxygen; and (3) IAP-inhaled NO phase, 15 minutes after combined administration of inhaled NO (20 ppm) and IAP (10 ng/kg/min) in 100% oxygen.During the inhaled NO phase, reductions of mean pulmonary arterial pressure (p < 0.05) and intrapulmonary shunt (p < 0.05) were noted. After the start of prostacyclin inhalation, a further decrease in mean pulmonary arterial pressure (p < 0.05) was observed. PaO2/FIO2 increased during the IAP-inhaled NO phase (p < 0.05), whereas intrapulmonary shunt decreased (p < 0.05).This study confirms the action of inhaled NO as a selective pulmonary vasodilator during lung transplantation. Combined therapy with IAP and inhaled NO increases the effects on pulmonary arterial pressure and oxygenation compared with inhaled NO administered alone without any systemic changes.

Keywords

Adult, Aerosols, Male, Pulmonary Circulation, Hemodynamics, Blood Pressure, Middle Aged, Pulmonary Artery, Nitric Oxide, Epoprostenol, Oxygen, Electrocardiography, Administration, Inhalation, inhaled aerosolized prostacyclin; inhaled nitric oxide; lung transplantation; pulmonary hypertension, Humans, Anesthesia, Female, Lung Transplantation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!