Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Seminars in Nuclear ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Nuclear Medicine
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Brain Tumors

Authors: Herholz, Karl; Langen, Karl Josef; Schiepers, Christiaan; Mountz, James M.;
Abstract

This review addresses the specific contributions of nuclear medicine techniques, and especially positron emission tomography (PET), for diagnosis and management of brain tumors. (18)F-Fluorodeoxyglucose PET has particular strengths in predicting prognosis and differentiating cerebral lymphoma from nonmalignant lesions. Amino acid tracers including (11)C-methionine, (18)F-fluoroethyltyrosine, and (18)F-L-3,4-dihydroxyphenylalanine provide high sensitivity, which is most useful for detecting recurrent or residual gliomas, including most low-grade gliomas. They also play an increasing role for planning and monitoring of therapy. (18)F-fluorothymidine can only be used in tumors with absent or broken blood-brain barrier and has potential for tumor grading and monitoring of therapy. Ligands for somatostatin receptors are of particular interest in pituitary adenomas and meningiomas. Tracers to image neovascularization, hypoxia, and phospholipid synthesis are under investigation for potential clinical use. All methods provide the maximum of information when used with image registration and fusion display with contrast-enhanced magnetic resonance imaging scans. Integration of PET and magnetic resonance imaging with stereotactic neuronavigation systems allows the targeting of stereotactic biopsies to obtain a more accurate histologic diagnosis and better planning of conformal and stereotactic radiotherapy.

Country
United Kingdom
Keywords

Treatment Outcome, Brain Neoplasms, Animals, Humans, Nuclear Medicine, Opportunistic Infections, Radiopharmaceuticals

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    155
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
155
Top 1%
Top 10%
Top 1%
bronze