
This review addresses the specific contributions of nuclear medicine techniques, and especially positron emission tomography (PET), for diagnosis and management of brain tumors. (18)F-Fluorodeoxyglucose PET has particular strengths in predicting prognosis and differentiating cerebral lymphoma from nonmalignant lesions. Amino acid tracers including (11)C-methionine, (18)F-fluoroethyltyrosine, and (18)F-L-3,4-dihydroxyphenylalanine provide high sensitivity, which is most useful for detecting recurrent or residual gliomas, including most low-grade gliomas. They also play an increasing role for planning and monitoring of therapy. (18)F-fluorothymidine can only be used in tumors with absent or broken blood-brain barrier and has potential for tumor grading and monitoring of therapy. Ligands for somatostatin receptors are of particular interest in pituitary adenomas and meningiomas. Tracers to image neovascularization, hypoxia, and phospholipid synthesis are under investigation for potential clinical use. All methods provide the maximum of information when used with image registration and fusion display with contrast-enhanced magnetic resonance imaging scans. Integration of PET and magnetic resonance imaging with stereotactic neuronavigation systems allows the targeting of stereotactic biopsies to obtain a more accurate histologic diagnosis and better planning of conformal and stereotactic radiotherapy.
Treatment Outcome, Brain Neoplasms, Animals, Humans, Nuclear Medicine, Opportunistic Infections, Radiopharmaceuticals
Treatment Outcome, Brain Neoplasms, Animals, Humans, Nuclear Medicine, Opportunistic Infections, Radiopharmaceuticals
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 155 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
