Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Seminars in Nuclear ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Nuclear Medicine
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

18F-Fluoride Positron Emission Tomography and Positron Emission Tomography/Computed Tomography

Authors: Ur Metser; Einat Even-Sapir; Gideon Flusser; Eyal Mishani;

18F-Fluoride Positron Emission Tomography and Positron Emission Tomography/Computed Tomography

Abstract

(18)F-Fluoride is a positron-emitting bone-seeking agent, the uptake of which reflects blood flow and remodeling of bone. Assessment of (18)F-fluoride kinetics using quantitative positron emission tomography (PET) methods allows the regional characterization of lesions of metabolic bone diseases and the monitoring of their response to therapy. It also enables the assessment of bone viability and discrimination of uneventful and impaired healing processes of fractures, bone grafts and osteonecrosis. Taking advantage of the favorable pharmacokinetic properties of the tracer combined with the high performance of PET technology, static (18)F-fluoride PET is a highly sensitive imaging modality for detection of benign and malignant osseous abnormalities. Although (18)F-fluoride uptake mechanism corresponds to osteoblastic activity, it is also sensitive for detection of lytic and early marrow-based metastases, by identifying their accompanying reactive osteoblastic changes, even when minimal. The instant fusion of increased (18)F-fluoride uptake with morphological data of computed tomography (CT) using hybrid PET/CT systems improves the specificity of (18)F-fluoride PET in cancer patients by accurately differentiating between benign and malignant sites of uptake. The results of a few recent publications suggest that (18)F-fluoride PET/CT is a valuable modality in the diagnosis of pathological osseous conditions in patients also referred for nononcologic indications. (18)F-fluoride PET and PET/CT are, however, not widely used in clinical practice. The limited availability of (18)F-fluoride and of PET and PET/CT systems is a major factor. At present, there are not enough data on the cost-effectiveness of (18)F-fluoride PET/CT. However, it has been stated by some experts that (18)F-fluoride PET/CT is expected to replace (99m)Tc-MDP bone scintigraphy in the future.

Keywords

Adult, Male, Fluorine Radioisotopes, Osteoma, Osteoid, Prostatic Neoplasms, Bone Neoplasms, Middle Aged, Fluorides, Positron-Emission Tomography, Humans, Female, Whole Body Imaging, Bone Diseases, Radiopharmaceuticals, Multiple Myeloma, Tomography, X-Ray Computed, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    178
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
178
Top 10%
Top 1%
Top 1%
Related to Research communities
Cancer Research
Upload OA version
Are you the author? Do you have the OA version of this publication?