
pmid: 16825015
Cellular and extracellular proteins suffer significant damage in vivo by glycation. Physiological proteolysis of proteins damaged by glycation forms glycation free adducts that are released into plasma for urinary excretion. Inefficient elimination of these free adducts in uremia leads to their accumulation. In mild renal insufficiency, plasma glycation free adducts accumulated as renal clearance declined. In patients with end-stage renal disease, plasma glycation free adducts were increased up to 18-fold on peritoneal dialysis and up to 40-fold on hemodialysis. Glycation free adduct concentrations in peritoneal dialysate increased with dialysate dwell time, achieving concentrations in the dialysate higher than in plasma--suggesting that glycation adduct formation may occur in the peritoneal cavity and active transport into the peritoneal cavity may occur. In hemodialysis, plasma glycation free adducts equilibrated rapidly across the dialysis membrane, with both plasma and dialysate concentrations decreasing during a dialysis session. Therefore, protein glycation free adducts normally excreted efficiently in urine show profound mishandling and accumulation in chronic renal failure. Their accumulation may impair vascular cell function and contribute to morbidity and mortality in renal disease.
Glycation End Products, Advanced, Glycosylation, Proteins, Cardiovascular Diseases, Renal Dialysis, Risk Factors, Humans, Kidney Failure, Chronic, Renal Insufficiency, Peritoneal Dialysis, Uremia
Glycation End Products, Advanced, Glycosylation, Proteins, Cardiovascular Diseases, Renal Dialysis, Risk Factors, Humans, Kidney Failure, Chronic, Renal Insufficiency, Peritoneal Dialysis, Uremia
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
