Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gastroenterologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gastroenterology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gastroenterology
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carcinogenesis of Helicobacter pylori

Authors: Pelayo, Correa; Jeanmarie, Houghton;

Carcinogenesis of Helicobacter pylori

Abstract

Helicobacter infection is the leading cause of gastric cancer worldwide. Infection with this ubiquitous bacterium incites a chronic active immune response that persists for the life of the host, in the absence of antibiotic-induced eradication. It is the combination of bacterial factors, environmental insults, and the host immune response that drives the initiation and progression of mucosal atrophy, metaplasia, and dysplasia toward gastric cancer. Although it may seem intuitively obvious that removing the offending organism would negate the cancer risk, this approach is neither feasible (half of the world harbors this infection) nor is it straightforward. Most patients are infected in childhood, and present with various degrees of mucosal damage before any therapy. This review outlines the histologic progression of human Helicobacter infection from the early stages of inflammation through the development of metaplasia, dysplasia, and, finally, cancer. The effects of dietary and bacterial eradication therapy on disease progression and lesion reversibility are reviewed within the context of population studies and compared between study designs and populations tested. Eradication studies in the mouse model of infection prevents the formation of gastric cancer, and allows regression of established lesions, providing a useful model to study interaction between bacterium, environment, and host, without the difficulties inherent in human population studies. Recent advances in identifying the bone marrow-derived stem cell as the cell of origin of Helicobacter-induced gastric cancer in the murine model are discussed and interpreted in the context of human disease, and implications for future treatment are discussed.

Keywords

Helicobacter pylori, Bone Marrow Cells, Cell Differentiation, Antioxidants, Anti-Bacterial Agents, Helicobacter Infections, Mice, Inbred C57BL, Disease Models, Animal, Mice, Cell Transformation, Neoplastic, Gastric Mucosa, Stomach Neoplasms, Disease Progression, Neoplastic Stem Cells, Animals, Anticarcinogenic Agents, Humans, Precancerous Conditions, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    593
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
593
Top 1%
Top 1%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!