Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advances in Chronic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Chronic Kidney Disease
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Natural Language Processing in Nephrology

Authors: Tielman T. Van Vleck; Douglas Farrell; Lili Chan;

Natural Language Processing in Nephrology

Abstract

Unstructured data in the electronic health records contain essential patient information. Natural language processing (NLP), teaching a computer to read, allows us to tap into these data without needing the time and effort of manual chart abstraction. The core first step for all NLP algorithms is preprocessing the text to identify the core words that differentiate the text while filtering out the noise. Traditional NLP uses a rule-based approach, applying grammatical rules to infer meaning from the text. Newer NLP approaches use machine learning/deep learning which can infer meaning without explicitly being programmed. NLP use in nephrology research has focused on identifying distinct disease processes, such as CKD, and extraction of patient-oriented outcomes such as symptoms with high sensitivity. NLP can identify patient features from clinical text associated with acute kidney injury and progression of CKD. Lastly, inclusion of features extracted using NLP improved the performance of risk-prediction models compared to models that only use structured data. Implementation of NLP algorithms has been slow, partially hindered by the lack of external validation of NLP algorithms. However, NLP allows for extraction of key patient characteristics from free text, an infrequently used resource in nephrology.

Keywords

Nephrology, Electronic Health Records, Humans, Renal Insufficiency, Chronic, Algorithms, Natural Language Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!