<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Renal excretory function and hemodynamics are determined by the effective circulating plasma volume as well as by the interplay of systemic and local vasoconstrictors and vasodilators. Microgravity results in a headward shift of body fluid. Because the control conditions of astronauts were poorly defined in many studies, controversial results have been obtained regarding diuresis and natriuresis as well as renal hemodynamic changes in response to increased central blood volume, especially during the initial phase of space flight. Renal excretory function and renal hemodynamics in microgravity are affected in a complex fashion, because during the initial phase of space flight, variable mechanisms become operative to modulate the effects of increased central blood volume. They include interactions between vasodilators (dopamine, atrial natriuretic peptide, and prostaglandins) and vasoconstrictors (sympathetic nervous system and the renin-angiotensin system). The available data suggest a moderate rise in glomerular filtration rate during the first 2 days after launch without a significant increase in effective renal plasma flow. In contrast, too few data regarding the effects of space flight on renal function during the first 12 hours after launch are available and are, in addition, partly contradictory. Thus, detailed and well-controlled studies are required to shed more light on the role of the various factors besides microgravity that determine systemic and renal hemodynamics and renal excretory function during the different stages of space flight.
Blood supply, Gloerular Filtration Rate, kidney, Renal Plasma Flow, Sympathetic Nervous System, Vasopressins, Dopamine, Drinking, Natriuresis, Kidney, Renin-Angiotensin System, Hydrostatic Pressure, Humans, Plasma Volume, Blood Volume, body fluid, Hemodynamics, Space Flight, microgravity, Diuresis, secretion, Blood, physiology, Astronauts, Human, Glomerular Filtration Rate
Blood supply, Gloerular Filtration Rate, kidney, Renal Plasma Flow, Sympathetic Nervous System, Vasopressins, Dopamine, Drinking, Natriuresis, Kidney, Renin-Angiotensin System, Hydrostatic Pressure, Humans, Plasma Volume, Blood Volume, body fluid, Hemodynamics, Space Flight, microgravity, Diuresis, secretion, Blood, physiology, Astronauts, Human, Glomerular Filtration Rate
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |