Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MATEC Web of Confere...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATEC Web of Conferences
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATEC Web of Conferences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATEC Web of Conferences
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.60692/1n...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/8v...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Titanium Production via Titanium Sulfide

إنتاج التيتانيوم عبر كبريتيد التيتانيوم
Authors: Ryosuke O. Suzuki; Yuta Yashima; N. Suzuki; Eltefat Ahmadi; Shungo Natsui; Tatsuya Kikuchi;

Titanium Production via Titanium Sulfide

Abstract

A new metallurgical process via titanium sulfide from ilmenite is proposed and experimentally approved: It consists of several stages; 1) The ilmenite ore is exposed to gaseous CS2 to selectively sulfurize to FeS, which is wet-chemically removed. 2) The residual oxide is again exposed to CS2 to form TiS2. 3) TiS2 is electrochemically reduced to metallic Ti using molten CaCl2-CaS as an application of OS process. TiFeO3 was exposed to Ar-CS2 mixed gas flow at 1173 K to form the mixture of FeS+TiO2. FeS was easily separated by immersing in H2SO4 solution at 313 K. After recovery of TiO2, it was converted completely to TiS2 by the second sulfurization with CS2. TiS2 could be reduced to Ti powder by calciothermic reduction and simulteneous electrolysis in a CaS-CaCl2 melt for about 6 hours at 1173 K and 3.0 V. The impurity decreased to a low level such as 0.021 mass%S due to very small solubility of S in a-Ti. However, 1.06 mass%O remained because of wide solubility of oxygen in a-Ti and water contamination in initial CaCl2.

Keywords

Solid Oxide Membrane Process, Sulfide, Electrode, FOS: Mechanical engineering, Organic chemistry, Electrolysis, Engineering, Electrolyte, Ilmenite, FOS: Chemical engineering, Fluid Flow and Transfer Processes, Titanium, Thermochemical Software and Databases in Metallurgy, Metal, Mechanical Engineering, Oxide, Chemical Engineering, Engineering (General). Civil engineering (General), Mineralogy, Materials science, Nuclear chemistry, Rutile, Chemistry, Solubility, Physical chemistry, Electrochemical Reduction in Molten Salts, Physical Sciences, Metallurgy, TA1-2040, Reduction Kinetics in Ironmaking Processes, Impurity, Sulfur, Inorganic chemistry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Published in a Diamond OA journal