<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In research on the origins of life, the concept of “chemical evolution” aims at explaining the transition from non-living matter to living matter. There is however strong disagreement when it comes to defining this concept more precisely, and in particular with reference to a chemical form of Darwinian evolution: for some, chemical evolution is nothing but Darwinian evolution applied to chemical systems before life appeared; yet, for others, it is the type of evolution that happened before natural selection took place, the latter being the birthmark of living systems. In this contribution, I review the arguments defended by each side and show how both views presuppose a dichotomous definition of “life”.
QL1-991, Physiology, QP1-981, Microbiology, Zoology, QR1-502
QL1-991, Physiology, QP1-981, Microbiology, Zoology, QR1-502
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |