<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AIMS: The aim of this work is to understand whether there is a difference in the dispersion of discs around stars in high-density young stellar clusters like the Orion Nebula Cluster (ONC) according to the mass of the star. METHODS: Two types of simulations were combined -- N-body simulations of the dynamics of the stars in the ONC and mass loss results from simulations of star-disc encounters, where the disc mass loss of all stars is determined as a function of time. RESULTS: We find that in the Trapezium, the discs around high-mass stars are dispersed much more quickly and to a larger degree by their gravitational interaction than for intermediate-mass stars. This is consistent with the very recent observations of IC 348, where a higher disc frequency was found around solar mass stars than for more massive stars, suggesting that this might be a general trend in large young stellar clusters.
5 pages, 5 figures, accepted by A&A
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |