Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy and Astrophysics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2025
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2025
License: CC BY
Data sources: HAL-INSU
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A non-axisymmetric potential for the Milky Way disk

Authors: Khalil, Y.; Famaey, B.; Monari, G.; Bernet, M.; Siebert, A.; Ibata, R.; Thomas, G.; +5 Authors

A non-axisymmetric potential for the Milky Way disk

Abstract

We provide a purely dynamical global map of the non-axisymmetric structure of the Milky Way disk. For this, we exploited the information contained within the in-plane motions of disk stars from Gaia DR3 to adjust a model of the Galactic potential, including a detailed parametric form for the bar and spiral arms. We explored the parameter space of the non-axisymmetric components with the backward integration method, first adjusting the bar model to selected peaks of the stellar velocity distribution in the solar neighborhood, and then adjusting the amplitude, phase, pitch angle, and pattern speed of spiral arms to the median radial velocity as a function of position within the disk. We checked a posteriori that our solution also qualitatively reproduces various other features of the global non-axisymmetric phase-space distribution, including most moving groups and phase-space ridges, despite those not being primarily used in the adjustment. This fiducial model has a bar with a pattern speed of 37 km s−1 kpc−1 and two spiral modes that are twoarmed and three-armed, respectively. The two-armed spiral mode has a ~25% local contrast surface density and a low pattern speed of 13.1 km s−1 kpc−1, and matches the location of the Crux-Scutum, Local, and Outer arm segments. The three-armed spiral mode has a ~9% local contrast density, a slightly higher pattern speed of 16.4 km s−1 kpc−1, and matches the location of the Carina-Sagittarius and Perseus arm segments. The Galactic bar, with a higher pattern speed than both spiral modes, has recently disconnected from those two arms. The fiducial non-axisymmetric potential presented in this paper, reproducing most non-axisymmetric signatures detected in the stellar kinematics of the Milky Way disk, can henceforth be used to confidently integrate orbits within the Galactic plane.

Keywords

Galaxy: evolution, Astrophysics of Galaxies, Galaxy disk -Galaxy evolution -Galaxy general -Galaxy kinematics and dynamics -Galaxy structure, kinematics and dynamics -Galaxy, FOS: Physical sciences, general -Galaxy, evolution -Galaxy, disk -Galaxy, Galaxy: disk, [SDU] Sciences of the Universe [physics], Galaxy, Astrophysics of Galaxies (astro-ph.GA), structure, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Galaxy: general, Galaxy: kinematics and dynamics, Galaxy: structure

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities