Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astronomy and Astrophysics
Article . 2021 . Peer-reviewed
License: EDP Sciences Copyright and Publication Licensing Policy
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Three dimensional atmospheric entry simulation of a high altitude cometary dustball meteoroid

Authors: L. Hulfeld; S. Küchlin; P. Jenny;

Three dimensional atmospheric entry simulation of a high altitude cometary dustball meteoroid

Abstract

Aims. The break-up of a dustball meteoroid is investigated numerically based on fluid dynamics simulations of the meteoroid’s atmospheric entry flow. Both thermal and mechanical break-up mechanisms are implemented, in order to investigate dustball meteoroid disintegration. Methods. A three dimensional model of a dustball meteoroid composed of thousands of small spherical grains was used in the atmospheric entry flow simulation, performed with the direct simulation Monte Carlo (DSMC) method. The dynamics of each meteoroid grain were calculated by means of the discrete element method (DEM), which models contact dynamics between grains. By coupling DEM with DSMC, the dynamics of a dustball meteoroid were calculated during atmospheric entry. In addition, thermal computations were also carried out taking into account the incoming atmospheric heat flux, thermal radiation, and grain ablation. Thus, this methodology is able to compute mechanical as well as thermal dustball meteoroid disintegration. Results. To test this novel multi-physics simulation framework, a prototypical dustball meteoroid, namely a Draconid meteoroid, was simulated. Using typical material properties from the literature, the Draconid meteoroid was compressed due to aerodynamic forces to roughly half its size immediately after the start of the simulation at 200 km altitude. Later, aerodynamic-induced meteoroid rotation occured until the meteoroid disintegrated mechanically at 120 km altitude. The fact that the meteoroid disintegrated mechanically is directly related to the combination of material properties used in the simulation.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
bronze