<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Based on the standard gravitational lensing formalism with its effective, projected lensing potential in a given background cosmology, we investigated under which transformations of the source position and of the deflection angle the observable properties of the multiple images remain invariant. These observable properties are time delay differences, the relative image positions, relative shapes, and magnification ratios. As they only constrain local lens properties, we derive general, local invariance transformations in the areas covered by the multiple images. We show that the known global invariance transformations, for example, the mass-sheet transformation or the source position transformation, are contained in our invariance transformations, when they are restricted to the areas covered by the multiple images and when lens-model-based degeneracies are ignored, like the freedom to add or subtract masses in unconstrained regions without multiple images. Hence, we have identified the general class of invariance transformations that can occur, in particular in our model-independent local characterisation of strong gravitational lenses.
Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, Mathematical Physics (math-ph), Mathematical Physics, Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, Mathematical Physics (math-ph), Mathematical Physics, Astrophysics - Cosmology and Nongalactic Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |